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Abstract— A series of experiments on steel 40 was conducted under nonproportional cyclic loadings.
Using data from this experimental investigation, Lensky’s hypothesis of local determinability is
analysed in elastic and elasto-plastic conditions. It is shown that, under nonproportional cyclic
loading paths, the above hypothesis does not hold in Ilyushin’s total strain space, nor in the plastic
strain space. © 1997 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

With the development of engineering technology, many structural components are usually
subjected to complex cyclic loadings. To determine the relation of stress vs strain under a
complex loading history, Ilyushin (1963) proposed a general plasticity theory. In this theory,
Ilyushin proposed the principle of fading memory, i.e. the current deformation behavior is
not influenced by the remote history of deformation while it is affected by the nearest past
history of deformation. Lensky (1962) proposed the hypothesis of local determinability :
the delay angle 6, (/ = 1,2,...5) extended by the current Frenet reference point {p,} with
respect to the next section of the deformation history and stress vectors entirely depends
on the current value of the delay angle 6, (j = 1,2,...5), the intrinsic geometry of this
section [the curvatures k,, (m = 1, 2, 3,4)] and the arc length s of the proceeding trajectory.
Lensky’s hypothesis plays an important role in promoting the practical application of
Ilyushin’s theory. Shiratori et al. (1975) studied the behavior of the stress vector along
cornered loading paths in the strain space by subjecting thin-walled tubular specimens of
brass to a combined axial load with either torsion or internal pressure. They verified
that Lensky’s hypothesis holds under these loading conditions. Ohashi et al. (1981) also
demonstrated experimentally that Lensky’s hypothesis does hold for some bi-linear strain
paths. Under nonproportional cyclic loadings, Ohashi ez al. (1985) showed that the hypoth-
esis does not hold under square strain paths at small equivalent strain amplitudes. Ning
and Chen (1991) further revealed that, under nonproportional cyclic loadings, the hypoth-
esis holds for some paths, and fails for some other paths. However, experimental data on
the delay phenomenon are not yet extensive enough in order that they may be incorporated
within the general theory of plasticity.

In the present paper, Lensky’s hypothesis is discussed first for the case of pure elasticity.
Then the results of experiments performed on thin-walled tubular specimens of steel 40 at
room temperature under combined axial force and torque are described. The loading paths
are along rhombic and triangular trajectories in the vector space of deviatoric strain in
order to elucidate whether Lensky’s hypothesis holds under out-of-phase strain cycles
with an abruptly-changing principal strain rate direction. Finally, the modified Lensky’s
hypothesis in the plastic strain space is discussed under the aforementioned two kinds of
nonproportional strain paths.
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2. EXPERIMENTS

2.1. Thin-walled tubular specimen

Thin-walled tubular specimens were machined from a steel 40 bar of 40 mm diameter
with a quenched and tempered treatment. The chemical composition of the material is: C:
0.42,8i:0.24, Mn: 0.56, S: 0.006, P: 0.017, Fe: balance, in weight percent. The mechanical
properties of the steel bar are: Young’s modulus of 220 GPa, Poisson’s ratio of 0.30, proof
stress of 351.9 MPa, tensile strength of 598.7 MPa, elongation of 47.1%, reduction of area
of 25.2%.

Experiments were conducted on a computer-controlled testing system comprising a
DEC PDP11 microcomputer, a MTS809 servo- controlled electrohydraulic testing machine
and a data acquisition system. Strain components in the specimen were evaluated using the
measurements from an axial-torsional extensometer of 25 mm gage, which was positioned
on the outer surface in the central part of the tubular specimen. The axial strain ¢ was
defined as the gage length displacement divided by the original gage length. The shear strain
y was obtained by multiplying the ratio of the angle of twist to the gage length by the mean
radius. Its relative error for the measurements of the axial strain and the torsional shear
strain is 0.20%. The experiments were run at the strain rate 5x 10~* s~' and at room
temperature. The axial stress ¢ and the shear stress © were assumed to be uniform over the
thin wall.

2.2. Stress and strain deviatoric vector space
The definition of the axial-torsional subspace follows as a subspace of Ilyushin’s five
dimensional deviatoric vector space (Ilyushin, 1963). The stress vector is
¢ =0 +o;3n; (1)
where o, = 0,0; = \/31, and ¢ and 7 are the axial and shear stresses, respectively.
n; and n; are the orthonormal base vectors in the stress space. Likewise, the strain
vector is
& =g N +ée3m @)
where, ¢, = ¢,6; = y/ﬁ, and ¢ and vy are the axial strain and engineering shear strains,

respectively.
The plastic strain vector is heuristically defined as

&’ = efn, +€5n;, 3)

where &§ = ¢, =P /\/3 , and &P and y® are the axial and shear plastic strains, respectively.
The Von Mises equivalent stress g, then, can be written as

0. = |o| = {(01)2*‘(03)2}”2 )
and the equivalent strain is given by
e = el = {(e))* +(e5)*}'2 (%)
The strain rate and plastic strain rate vectors may be defined as
&=§&n;+£n, (6)
& = &n, +é&5n;, (7

respectively, where (') stands for the derivative with respect to time z. The arc length s of
the strain path may be calculated from
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s = J || dz. (8)

0

The equivalent strain amplitude Ag/2 is taken as half of the maximum Euclidean norm
between two arbitrary points A and B along the strain trajectory D in one cycle:

Ag/2 =1/2Sup {|es —&s|: ea€D,e5eD}. 9)

3. LENSKY’S HYPOTHESIS OF LOCAL DETERMINABILITY

Since Lensky’s hypothesis will be discussed for the simple cases under rhombic and
triangular straining paths in the two dimensional axial-torsional strain subspace, Lensky’s
hypothesis (1962) can be presented as

%g =f(0,k,s), cos® =a-de/(|o||de|) (10)

where 0 is the delay angle extended by the strain rate and stress vectors, k is the curvature
of the strain trajectory, de denotes the total strain incremental vector.

For the convenience of discussion, the cyclic saturated data along cyclic strain tra-
jectories were used. Since the arc length s along the cyclic saturated strain curve is long
enough, eqn (10) can be simplified as

06
azf(@,k). (1

When the hypothesis is discussed for the case of a straight-line trajectory, eqn (11) can
be further simplified as:

dé
praPACH (11a)

4. LENSKY’S HYPOTHESIS UNDER ELASTIC DEFORMATIONS

Both Lensky (1962) and Ohashi (1981) verified the validity of the hypothesis under
large straining. In the case of multi-linear trajectories discussed, the elastic strain is much
less than the plastic one. On the other hand, under the nonproportional cyclic strain path
the total strains often contain the large elastic components. When the elastic strain cannot
be neglected, the results of Lensky (1962) and Ohashi ez al. (1981) must be reconsidered.
In Lensky’s hypothesis, de includes both elastic and plastic components. As a special case,
a purely elastic behavior under the square and rhombic strain paths is investigated so that
the effects of the elastic property on the validity of the hypothesis is verified.

It is known that the stress response of a purely elastic material is not path dependent,
and that the elastic material has no memory. The relevant angle 8 is uniquely determined
for all strain paths specified as above. The 6~s relations for elastic material at the elastic
Poisson’s ratio of 0.3 under rhombic strain paths are shown in Fig. 1. The curves in Fig.
1(a) at the equivalent strain amplitudes of 0.3% and 0.5% show that, at the same angle 0,
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Fig. 1. 6 vs s (As) relations for elastic deformation along rhombic strain paths. (a) 6 vs s relation.

(b) 8 vs As relation.
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the slope [df/ds| is smaller at 0.5% than that at 0.3%. These 6—s relations are significantly
different even though the delay angles 6 are the same at the corners of the strain trajectories
at the two equivalent strain amplitudes. Meanwhile, even though the four sides on the
rhombic strain path have the same arc length, all the angles at the four corners are right
ones, and the f—s relations are the same for the two opposite sides, such as AB and CD,
the relations are different for the two neighboring sides like AB and BC. When the 6—s
relation for side BC is transferred along the abscissa so that the increments As for the sides
AB and BC are the arc lengths measured from sharp corner A and B, respectively, we find
the two 6—As curves different, as shown in Fig. 1(b). Therefore, it is concluded that Lensky’s
hypothesis cannot be obeyed for the purely elastic behavior under the rhombic strain paths.

The 6-s relations for the square strain path are shown in Fig. 2. Here, the trajectory is
multi-linear and its curvature & for each segment is zero. Fig. 2(a) corresponds to the 6-As
relations for the neighboring sides AB and BC at the equivalent strain amplitude of 0.30%.
The 6-s relation for side BC is transferred along the abscissa to the 6—As relation where As
is the arc length measured from sharp corner B. Obviously, the values of |df/ds| for the
two sides are different at the same 8. Figure 2(b) presents the —s relations at the equivalent
strain amplitudes of 0.3 and 0.5%, respectively. Even though the 6—s relations for the
opposite sides at a given equivalent strain amplitude are the same, the ones at different
equivalent strain amplitudes are different. At the same 6, the |d6/ds| is larger at the small
equivalent strain amplitude 0.3% than that at the large amplitude 0.5%. Consequently,
Lensky’s hypothesis cannot be obeyed for purely elastic behavior along the square strain
path.

The difference between the 6—s relations for two neighboring sides is mainly caused by
the fact that the elastic Poisson’s ratio is not equal to 0.5. The difference among the 6-As
relations under different equivalent strain amplitudes is due chiefly to the purely elastic
property. For this reason, Lensky’s hypothesis cannot be obeyed under purely elastic
nonproportional cyclic strain paths.

5. LENSKY’S HYPOTHESIS FOR ELASTO-PLASTIC BEHAVIOR

Elasto-plastic responses of materials under nonproportional cyclic straining are more
complicated than elastic ones. In general, plastic strains occur when total strains are large
enough. When the equivalent strain amplitude is small, the elastic strain is the most part of
the total strain and thus the 6—s relation is controlled to a great degree by the elastic rule
since the direction of the stress vector is approximately determined by the elastic theory.
When the equivalent strain amplitude is large, the elastic strain range is negligible in
comparison with the plastic strain one and thus the 6—s relation is controlled to a smaller
degree by the elastic rule with the Poisson’s ratio v approaching 0.5. Based on the above
theoretical analysis, it seems that when the equivalent strain amplitude is small, Lensky’s
hypothesis cannot be valid.

The validity of Lensky’s hypothesis is experimentally examined for nonproportional
cyclic loading within the elasto-plastic range. Ohashi e al. (1985) showed that Lensky’s
hypothesis for 316 stainless steel does not hold under the square strain path at a small
equivalent strain amplitude, but the 6-As relations approach a unique curve with the
increase of the equivalent strain amplitude. In other words, when the equivalent strain
amplitude is large enough, the above hypothesis may be obeyed for 316 stainless steel under
square paths.

The validity of Lensky’s hypothesis depends on the uniqueness of the 6—As curve for
the multi-linear paths with different shapes and various strain amplitudes. In the following
the validity of Lensky’s hypothesis for steel 40 under rhombic and triangular strain paths
is investigated.

5.1. Rhombic strain trajectories

Figure 3 shows rhombic strain trajectories in the deviatoric strain plane (¢, &;) obtained
from the out-of-phase experiments with Ag,/2 = 0.47% and six different Ae,;/2. Here, 6, and
6, denote the abruptly-changing angles at the sharp corners along the trajectories. As Aes/2
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(b) 6 vs s relation.
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Fig. 3. The experimental rhombic paths on steel 40.

increases, 8, becomes smaller and 6, larger. The arc lengths for the four sides are the same
for each Ae,;/2, and the equivalent plastic amplitudes are much larger than elastic ones
under these strain trajectories. The 6-As’ curves for steel 40 are shown in Figs 4-6. Figure
4 shows that, for side AB, the value of |df/ds| at a given 6 of more than 60° increases with
a decrease of the Ag;/2. When As’ is large and 6 is small, the 6—As’ curves for the six rhombic
strain paths tend to coincide with each other. Figure 5 indicates that when As’ is small, the
6-As’ curves for side BC agree with each other, on the other hand, when As’ is larger than
0.2%, 1d0/ds| at the same 6 decreases with the increase of Ae,/2. Figure 6 presents the 6—
As’ curves for the sides AB and BC with six different Ae,/2. Evidently, the 6-As” curves for
the side AB are quite different from those for the side BC. Furthermore, these curves do
not agree with each other by translating along the As” axis. When the locus of strain vector
turns a corner, the value of 8 has an abrupt increase. Theoretically the increment of § equals
6. (or 6,) at the corner since the stress vector does not follow the change in the direction of
the strain trajectory immediately. Because the corners along the practical strain path are
not sharp and have finite curvatures, the sudden increment of 8 after the corner is smaller
than the angle 6, (or 8,). Ohashi et al. (1981) confirmed that the current curvature of
trajectory has little influence on the subsequent 6-As relation for subsequent straight-line
trajectory. From Figs 4-6, it is concluded that the plastic behavior along rhombic strain
trajectories does not obey Lensky’s hypothesis.

5.2. Triangular strain trajectories

Under the loadings along the equilateral triangular strain paths with three equivalent
strain amplitudes of 0.2, 0.3 and 0.38%, the 8-As relations for steel 40 are shown in Figs 7
and 8. Figure 7 demonstrates that the 6—As curves for the three sides of the triangular
trajectory at the equivalent strain amplitude of 0.30% are approximately identical when
the three 6—s curves are transferred to the 6—As ones where As is measured from the
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Fig. 4. Relation 6 vs As’ for side AB (As’ = As—x. As: arc length after the corner, x: arc length
transferred rightward).

respective corner. The same conclusion can be obtained for the equilateral triangular paths
with the equivalent strain amplitudes of 0.20 and 0.38%. Hence, the assumption of isotropy
is considered valid. Figure 8 shows that the 6—As’ relations for side AB, under the above
three equivalent strain amplitudes, depend significantly on the equivalent strain amplitude.
As the equivalent strain amplitude increases, the value of |df/ds| at the same & decreases
for the As’ less than 0.1%. This indicates that the values of df/ds depend not only on the
delay angle 6, but also on the equivalent strain amplitude. Therefore, Lensky’s hypothesis
cannot be obeyed. However, the differences among the 6-As’ curves tend to be small with
the increase of equivalent strain amplitude. This result is in agreement with that of Ohashi

et al. (1985).

5.3. Lensky's hypothesis in the plastic strain space
In axial-torsional plastic strain subspace, 8° and s are defined as

. 1
cosp — 24 (12)
|o || deP|
® = J || dr. (13)
0

In the paper, the validity of Lensky’s hypothesis in the plastic strain space is examined
by means of the evolution of the delay angle 6° between the tangent to the plastic strain
trajectory and the stress vector since the property of plastic flow can be revealed quite well
in the plastic space. It is difficult to examine directly the validity of the hypothesis in this
case. Axial-torsional tests are performed in general by the total strain control since a
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Fig. 5. Relation 8 vs As’ for side BC (As’ = As—x. As: arc length after the corner, x: arc length
transferred rightward).

plastic strain controlled test is not easy to carry out. The experimental results under the
nonproportional cyclic multi-linear trajectory controlled by total strain show that the
response is a curvilinear plastic strain trajectory in the plastic strain space and its curvature
changes continuously along each segment. Obviously, d6°/ds® is influenced by 6° and the
curvature 6°. Since to demonstrate quantitatively the modified Lensky’s hypothesis in the
plastic strain space is a difficult task, we shall analyse the hypothesis qualitatively.

Assuming the plane plastic strain trajectory as shown in Fig. 9, the angle 6° is defined
as

o =06,—0, (14)

where 6, is the angle between the stress vector and the base vector n;, and 6, the angle
between the tangent to the plastic strain trajectory and the base vector n;. Thus,

P
(_1_6_ =k — d_ei (15)
dsP dsP
where
0
o = dg; (16)

is the curvature of the plastic strain trajectory.
When the cycles are saturated, the modified Lensky’s hypothesis may be expressed as
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Fig. 6. The 6-As’ relations for side AB and BC on rhombic paths.

%9: = f16°, k). an

Equation (17) states clearly that, if Lensky’s hypothesis is valid for a specific material,
dfP/ds® must be a single-valued function of 6° and k® under an arbitrary plastic strain
trajectory at cyclic saturation.

The abruptly-changing direction of plastic flow at a sharp corner will cause stress
relaxation, and the plastic strain response cannot be calculated accurately in the vicinity of
the sharp corner along the trajectory because of test errors. Therefore, the values of the
curvature kP and df,/ds® in the vicinity of a sharp corner from numerical calculations are
not accurate. Except for the short range near the corner, the values of £°, d6?/ds® and
df,/ds® by numerical calculation satisfy eqn (15) quite accurately and thus the calculated
values of kP, 6°, d6P/ds® at some distance from a sharp corner may be considered to be
accurate enough. Figures 10 and 11 provide, through the curves 6°-d6°/ds® and 0°—kF, the
values of d6°/ds® and & corresponding to 6° along the strain trajectory.

Figure 10 shows that, for the two rhombic trajectories at the Ag;/2 of 0.15 and 0.60%,
the 8°—d6°/dsP curves for the 6° smaller than 20° are almost identical and the 8°—%® ones at
the two Ae;/2 are almost the same. However, when the abruptly-changing € is an obtuse
angle, the 6° is generally large along the subsequent loading path. At the same 6° and along
the segment where the 8°—k® curves for the two rhombic trajectories are approximately
identical, the derivative |d6°/ds?| at the Aes/2 of 0.15% is significantly larger than that at
0.60%. So, the values of |d6P/ds?| are different at the given 6° and &® for the two rhombic
trajectories when 6P is larger than 20°. Therefore, the modified hypothesis cannot be obeyed
along the rhombic strain trajectories.

Figure 11 shows the 8°-df/ds® and 8°—k® curves for two triangular strain trajectories
at the equivalent strain amplitudes of 0.30 and 0.38%. Even though the 6°—%P curves in the
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Fig. 7. Relation 6 vs As after the corners on the equilateral triangular trajectory under equivalent
strain amplitude of 0.30%.

160

120 ~ \

6 (degree)

0 L | I | 1

0.00 0.20 0.40 0.60

As' (%)

Fig. 8. Relations 6 vs As’” for side AB on the equilateral triangular trajectories at three equivalent
strain amplitudes of 0.20, 0.30, 0.38%, respectively (As’ = As—x. As: arc length after the corner, x:
arc length transferred rightward).
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cases along the bottom side CA shown in Fig. 7 are approximately the same, the cor-
responding 6°—d6P/ds® curves are different, i.e. at the same values of 6° and kP the value of
|d6P/dsP| at the equivalent strain amplitude of 0.38% is smaller than that at 0.30%, especially

at large 6°.
The above results again demonstrate that the modified Lensky’s hypothesis in the

plastic strain space is not true along the triangular strain trajectories.

6. CONCLUSION

The validity of Lensky’s hypothesis of local determinability for steel 40 under the
purely elastic and the elasto-plastic nonproportional cyclic loadings is discussed in both the
total strain space and the plastic strain space. The following results are obtained:
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(1) The hypothesis cannot be obeyed for the cyclic deformation behavior that is
controlled mainly by elastic properties.

(2) The hypothesis cannot be obeyed under nonproportional elasto-plastic rhombic
and triangular strain paths for steel 40 when equivalent strain amplitude is small.

(3) In the cases with obtuse veering angles, Lensky’s hypothesis for steel 40 cannot
be obeyed under rhombic and triangular strain trajectories at different equivalent strain
amplitudes, even in its modified form in the plastic strain space.

The above results imply that both eqns (1) and (17) cannot hold. The information
provided by eqns (10) and (17) is not enough to determine the stress response of material
under a nonproportional cyclic loading. Consequently, Lensky’s hypothesis does not have
a general validity under the nonproportional cyclic loading.
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